Efficient Skill Learning using Abstraction Selection

نویسندگان

  • George Konidaris
  • Andrew G. Barto
چکیده

We present an algorithm for selecting an appropriate abstraction when learning a new skill. We show empirically that it can consistently select an appropriate abstraction using very little sample data, and that it significantly improves skill learning performance in a reasonably large real-valued reinforcement learning domain.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Robot learning from demonstration by constructing skill trees

We describe CST, an online algorithm for constructing skill trees from demonstration trajectories. CST segments a demonstration trajectory into a chain of component skills, where each skill has a goal and is assigned a suitable abstraction from an abstraction library. These properties permit skills to be improved efficiently using a policy learning algorithm. Chains from multiple demonstration ...

متن کامل

Efficient Abstraction Selection in Reinforcement Learning

This paper introduces a novel approach for abstraction selection in reinforcement learning problems modelled as factored Markov decision processes (MDPs), for which a state is described via a set of state components. In abstraction selection, an agent must choose an abstraction from a set of candidate abstractions, each build up from a different combination ofions, each build up from a differen...

متن کامل

Constructing Skill Trees for Reinforcement Learning Agents from Demonstration Trajectories

We introduce CST, an algorithm for constructing skill trees from demonstration trajectories in continuous reinforcement learning domains. CST uses a changepoint detection method to segment each trajectory into a skill chain by detecting a change of appropriate abstraction, or that a segment is too complex to model as a single skill. The skill chains from each trajectory are then merged to form ...

متن کامل

Meta-level Priors for Learning Manipulation Skills with Sparse Features

Manipulation skills need to adapt to the geometric features of the objects that they are manipulating, e.g. the position or length of an action-relevant part of an object. However, only a sparse set of the objects’ features will be relevant for generalizing the manipulation skill between different scenarios and objects. Rather than relying on a human to select the relevant features, our work fo...

متن کامل

CST: Constructing Skill Trees by Demonstration

We describe recent work on CST, an online algorithm for constructing skill trees from demonstration trajectories. CST segments a demonstration trajectory into a chain of component skills, where each skill has a goal and is assigned a suitable abstraction from an abstraction library. These properties permit skills to be improved efficiently using a policy learning algorithm. Chains from multiple...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009